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HELIOS Benchmark Calculation: 
Diffusion and Multi-Angle Radiation Transport Models 

 
 

In HELIOS, options for modeling radiation transport include: 
 

• flux-limited, multi-group radiation diffusion (planar, cylindrical, and spherical 
geometries); 

• multi-angle short-characteristics (planar and spherical geometries). 
 
Tabulated multi-group opacities can be used for either of the above radiation transport models.  
When the inline collisional-radiative atomic kinetics modeling is used in HELIOS-CR, the multi-
angle short-characteristics model is utilized. 
 

While the multi-angle short-characteristics method is often more accurate than the diffusion 
approximation, particularly for relatively low-Z materials in laboratory plasma experiments, this  
method is time-independent. Therefore, the time-dependent diffusion model may be better suited 
for the systems in which the radiation fields vary extremely rapidly. 
 

In this memo, as an illustration of the benchmarking of the radiation transport algorithms, the 
results of HELIOS calculations are compared with analytic solutions.  In the latter part of this 
memo, results are shown for example applications involving the propagation of radiation through 
Au and CH planar slabs.  
 
Benchmarks 
 
Benchmark 1.  Steady-State Planar Cases 

 
For this benchmark problem, a radiation source is applied to an inner boundary of a uniform 

purely scattering plasma slab. Opacities are assumed to be constant and independent of photon 
energy; the plasma is not allowed to move; and radiation heating and cooling rates are neglected. 

 
In this case, the diffusion equation reduces to: 
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and the analytic solution for this steady-state problem can be written as: 

 
1

4
( ) ( )

0 2 2

1 1
1 2 2( )
2 1 1

2 2

X x X x

r
X X

D e D e
T x T

D e D e

λ λ

λ λ

λ λ

λ λ

− − −

−

⎛ ⎞⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟=

⎜ ⎟⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

 
Here, E is the intensity of the radiation field, c is the speed of light, D is the diffusion coefficient, 
σ  is the plasma opacity, S is the source function, Tr is the radiation temperature, T0 is the  
temperature of incident radiation,  λ is the inverse diffusion length, and X is the plasma width. 
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The radiation temperature at every point in space is defined as:  
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where σSB is the Stephan-Boltzmann constant.  The default flux limiter in HELIOS is based on 
Larsen formalism, where the diffusion coefficient can be written as:  
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with n = 2.  Without the flux limiter, the diffusion coefficient reduces to 1/3σ. The inverse 
diffusion length is defined as follows:  
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For the short-characteristics:  
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where E2(x) belongs to a family of exponential integrals,  
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Results from HELIOS calculations are compared with analytic solutions in Figure 1.  Results 

are shown for opacity parameter values of σ = 1 cm-1 (left) and σ = 10 cm-1 (right).  Calculations 
utilizing the multi-angle short characteristics model were run using 5 angles.  Using this model, 
the results from HELIOS are seen to compare favorably with the analytic solutions.  Simulation 
results computed using the diffusion model with flux limiting and without flux limiting are 
represented by the green and red curves, respectively.  Note that the analytic solution for this 
benchmark diffusion case does not include flux limiting.  Again, it is seen that the diffusion 
results from HELIOS are in very good agreement with the analytic solution. 
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Figure 1. Comparison between planar analytic solutions and HELIOS results using the multi-angle short 
characteristics model (black), the diffusion model (red), and the flux-limited diffusion model (green).  
Results are shown for σ = 1 cm-1 in the left plot, and σ = 10 cm-1 in the right plot.  Data for the analytic 
solutions are represented by diamonds.  Note that the analytic solution for diffusion does not include flux 
limiting. 
 
 
Benchmark 2.   Planar Marshak Wave Simulations 
 

Assumptions for this benchmark case are the same as in the previous example, with the 
exception of the radiation field being coupled to the plasma (Su and Olson, JQSRT 56, 337 
(1996)).  Here, the plasma thermal conductivity is neglected, and the plasma specific heat has an 
analytic dependence on temperature given by: cv= α T3.  Details of the analytic solutions are 
rather involved and will not be presented here.  For this calculation we have chosen the specific 
heat coefficient α to be 160 σSB / c, and the opacity, σ, to be 0.558 cm-1.  The solutions for the 
radiation temperature Tr, and the plasma temperature Tp are presented in terms of a dimensionless 
length: 

 
3l xσ= , 

and time: 
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α
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In this problem, an isotropic radiation field from the boundary source penetrates and heats the 

plasma.  The plasma then starts radiating at the local plasma temperature.  The two resulting well-
defined wave fronts penetrate deep into the plasma, and, at late times, exhibit virtually identical 
propagation characteristics. 
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Figure 2.  Comparison between planar analytic solutions and HELIOS calculations at dimensionless times 
of τ = 0.1, 1.0, and 10.0.   Left: spatial distribution of radiation temperatures.  Right: spatial distribution of 
plasma temperatures. 
 
 
 

In Figure 2, results from HELIOS calculations using the time-dependent diffusion model with 
flux limiting are compared with analytic solutions at dimensionless times of τ = 0.1, 1.0, and 10.0.  
Radiation temperatures are shown at the left and plasma temperatures are shown at the right.  
Note that at late times (τ  >> 1), the radiation temperature and plasma temperature profiles are 
nearly the same.  The HELIOS results show good agreement with the analytic solutions at all 
times. 
 
 
Benchmark 3.  Steady-State Spherical Cases 

 
For this benchmark problem, a radiation source is applied to an outer boundary of a uniform 

spherical plasma.  As in Benchmark 1, opacities are assumed to be constant and independent of 
photon energy; the plasma is not allowed to move; and radiation heating and cooling rates are 
neglected.  In spherical geometry, the analytic solution has the following form: 
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where r is the radial coordinate, and R is the coordinate at which the radiation source is applied.   
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Figure 3. Comparison between steady-state analytic solutions (red symbols) and HELIOS diffusion model 
results (blue curve) for a uniform spherical plasma.  Results are shown for σ = 0.558 cm-1 in the left plot, 
and σ = 5.58 cm-1 in the right plot.  Note that the analytic solution for diffusion does not include flux 
limiting. 
 

Figure 3 compares analytic and numeric solutions for R = 1 cm and σ = 0.558 cm-1 (left) and 
5.58 cm-1 (right). 

 
 

Benchmark 4.  Steady-State Cylindrical Cases 
 
Using the same assumptions as the planar and spherical cases (above), the solution for 

cylindrical geometry can be written in terms of modified Bessel functions of the first kind I: 
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where r is the radial coordinate, R is the coordinate at which the radiation source is applied, and I0 
and I1 are modified Bessel functions (see, e.g., Abramowitz and Stegun, Handbook of 
Mathematical Functions, Dover, 1965). 
 

Figure 4 compares analytic and numeric solutions for R = 1 cm and σ = 0.558 cm-1 (left) and 
5.58 cm-1 (right).  As in the planar and spherical cases, agreement between HELIOS and the 
analytical solutions is very good. 
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Figure 4. Comparison between steady-state analytic solutions (red symbols) and HELIOS diffusion model 
results (blue curve) for a uniform cylindrical plasma.  Results are shown for σ = 0.558 cm-1 in the left plot, 
and σ = 5.58 cm-1 in the right plot.  Note that the analytic solution for diffusion does not include flux 
limiting.
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Applications 
 

As a practical application of the radiation transport models in HELIOS, the simulation of 
radiation propagation through gold (Au) and plastic (CH) planar slabs are shown below.  Results 
from the Au simulations are compared with data obtained from NOVA cylindrical hohlraum 
experiments (Porter et al., LLNL ICF Quarterly Report, UCRL-LR-105821-94-4 (1994)).   

 
In each simulation, the slab is exposed to a time-dependent radiation field on one side.  The 

radiation field is assumed to be Planckian, with estimates for the radiation (or “drive”) 
temperature constrained by experimental DANTE measurements of Porter et al.  The assumed 
drive temperature is shown in Figure 5. 

 

 
 
For the material properties in these simulations, PROPACEOS (PRism OPACity and 

Equation Of State) multigroup opacities were used, along with SESAME equations of state. 
 
 

Case 1.  Au Radiation Burnthrough 
 
Results from HELIOS simulations for 1 and 2 µm-thick Au foils are shown in Figure 6.  Here 

the radiation flux emitted from the rear side of the foil is shown as a function of time.  Results are 
shown from calculations using the multi-angle short characteristics model (solid squares) and the 
flux-limited diffusion model (open circles). 

 
Note that for these Au simulations, the differences in the results for the multi-angle and 

diffusion cases are small.  This is because high-Z materials such as Au have relatively high 
opacities and short photon mean free paths.  Under these circumstances, assumptions in the 
diffusion approximation are valid. 

 
Figure 7 shows the radiation burnthrough data obtained from the NOVA experiments of 

Porter et al. (1994).  Comparing Figures 6 and 7, it is seen that the simulations are in good 
agreement with the experimental data for both the 1 µm-thick and 2 µm-thick cases. 

Figure 5.  Radiation drive temperature used 
in Au and CH radiation burnthrough 
examples. 
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Figure 6.  Calculated flux at the rear surface 
of 1 and 2 µm-thick Au foils.  Results are 
shown from simulations using the multi-
angle (solid squares) and diffusion (open 
circles) radiation transport models. 

Figure 7.  Streak camera data recording the 
burnthrough of radiation at the rear surface of 
1 and 2 µm-thick Au foils (from Porter et al., 
1994). 
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Case 2.  CH Radiation Burnthrough 
 

Results from HELIOS simulations for 10 µm-thick CH foils are shown in Figure 8.  Again, 
the radiation flux emitted from the rear side of the foil is shown as a function of time.  Results are 
shown from calculations using the multi-angle short characteristics model (solid squares) and the 
flux-limited diffusion model (open circles). 

 
Unlike the Au case, the CH simulations show significant differences between results using 

the multi-angle and diffusion radiation transport models.  This is because of the lower opacities 
for the (low-Z) CH, which makes the diffusion approximation less applicable (see, e.g., G. 
Rochau, Ph.D. Dissertation, Dept. of Engineering Physics, Univ. of Wisconsin (2003)). 
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Figure 8.  Calculated flux at the rear surface of a 10 µm-thick CH planar slab.  Results are shown from 
simulations using the multi-angle (solid squares) and diffusion (open circles) radiation transport models. 
 

 
 


